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A solution of the problem of the stability of periodic and conditionally periodic nearly autonomous 

systems, and a qualitative analysis of systems close to resonance are given for reversible systems using a 

single approach. In addition, the problem of the rolling of Chaplygin’s nearly dynamically symmetrical 

sphere is considered. It is shown that rolling along a straight line is formally stable for all values of the 

parameters. For a nearly homogeneous sphere a main resonance is possible which leads to instability. 

1. THE QUASI-AUTONOMOUS REVERSIBLE SYSTEM 

Consider the problem of the stability of the zero solution of the system 

X’ = X,(x) + &X1(&, x, t), x E Rp 

X0(0) = 0, Xl@, 0, 0 = 0, X*(e, x, f + 27c) = X,(e, x, r) 

Ml&(x) f E&(E, x, 03 + &(Mx) + &X1(&, Mx, -t) s 0 

which is reversible with respect to a mapping M of the phase space. Here E is a small parameter 
and M is a certain constant non-degenerate matrix. We shall assume that the right-hand sides 
are analytic in the variable x and in the small parameter E, and can be represented by Taylor- 
Fourier series. 

For simplicity, we will investigate the case of involution when M2 = E, and the canonical 
form of the matrix M is 

El O 
M=O -E, I I (I+n =p) 

(Ej is the identity matrix of order j). Such a situation occurs in mechanical systems where, as a 
rule Ia n. Hence the characteristic equation of the autonomous system obtained from (1.1) at 
E = 0 has not less than m = rr-l simple zero roots [l]. The remaining roots are divided into 
pairs 33, (s= 1, . . . , n), and stability is therefore possible only when all A.‘, s 0. In the 
subsequent discussion we shall assume that h”, c 0 (S = 1, . . . , n), and the simple elementary 
divisors correspond to multiple h,. 
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With these assumptions, system (1.1) can be reduced to the form 

(1.2) 

by means of a linear transformation ~dependent of E. Here 5 is a real m-vector, and TI and q 
are complex-conjugate n-vectors. The linear part of the autonomous system is written 
explicitly and the bar denotes the complex conjugate. Here, the right-hand sides of (1.2) 
contain [l--3] only pure imaginary coefficients by virtue of the reversibility. 

Henceforth, when examining problems with small parameters we shall use the approach 
employed in [2], treating E as the local variable, which satisfies the equation t = 0, with sub- 
sequent application of the normalizing procedure to the system of equations obtained. 

The linear system. We will first consider the problem of calculating the characteristic 
exponents of the system linearized with respect to the variables 6, q and 3. This problem has 
been considered in detail in [2]. A very simple and comprehensive solution for a reversible 
system, which also holds for a conditionally periodic right-hand side in (l.l), is obtained below. 

We will normalize the system linearly with respect to 5, r( and 3, but non-linearly with 
respect to all the variables E, 5, q and 5j. Then, in normal form obtained 

only the resonance terms are non-zero, for which [2] 

(iirl - r&l + ..f + (qn - r,)h, + ip = 0 

(1.3) 

(1.4) 
VI + . . . fv,+ql + . . . +qn+rl + . . . +r,=O 

The exponents vi, q, and r, are non-negative integers (p is integer), except vi for the jth 
equation in 4 and q, for the sth equation in q. Here vi and q, can also take the value -1. 

We shall clarify the structure of the normal form (1.3). If we have vi = 0 in the equation for 
tj then all the remaining exponents v, (k f j), q,, r, are equal to zero, as follows from (1.4). 
The corresponding constant coefficient of sj is then zero by virtue of the invariance of system 
(1.3) to the replacement of (t, g, q, 5) and (-t, 5, 5, q). When vi =-1 the second relation of 
(1.4) is satisfied for one of v, (k f j), qS, r, equal to 1. If vt = 1, as a consequence of the 
reversibility, the coefficient of & equals zero. If 4, - - 1 then the first relation of (1.4) implies 
h, + ip = 0, and hence there is s~ultaneously the term with r, = 1 (-h, - ip = 0). 

Now consider the equation for r\,. An analysis of conditions (1.4) shows that only the 
coefficients containing time explicitly, for which q, = 1, are non-zero here. Then, either r, = 1 
and the resonance 2h, +ip occurs, or 5 = 1 (j # s) and the resonance h, + hj = ip OCCWS, or 
qj = 1 and the resonance h, -h, =ip occurs. 

Hence, if i& + hi) is not an integer, the normal form (1.3) has the form 

5’ = 0, TJS = h;(E)l&, ij; = --h;(E)qs (s = l,...,n) 
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where 

h‘ =h I s +&h(‘)+&*h(*)t s s . . . (h’j’ = const) s 

are series in E with purely imaginary coefficients. From the convergence of the normalizing 
transformation in this case [2], we conclude that the following theorem holds. 

Theorem 1. If h, f hj is not an integer i, all the characteristic exponents are pure imaginary 
and they are calculated as the roots of the characteristic equation of the normalized system 
(1.3). 

Corollaries. 1. When the conditions of Theorem 1 are satisfied the characteristic exponents 
to a first approximation in E may be obtained by replacing, in the linear system, the periodic 
terms, linear in E, by their mean values over the period. 

2. If the conditions of Theorem 1 are satisfied and the mean values of the periodic terms are 
zero, then the characteristic exponents do not contain terms of the first power in E. 

This result was obtained in a special case in [5]. 

Notes. 1. Theorem 1 remains valid for the problem with a small vector parameter E. 
2. The main merit of the formulation of Theorem 1 is the fact that the numbers h, do not depend on E. 

Another approach to investigating system (1.1) is also possible, based on the assumption 
that the mean value X*&E, x) of the function X1(&, x,t) over the period is zero. In this case the 
3L, are found as the roots of the characteristic equation of the system 

X’ = x,(X) + E&(&, x) 

and, in general, they depend on E. Theorem 1 also holds in this case, of course. When this 
approach is used it is convenient to introduce one more small parameter p and to examine the 
system 

x’ =X,(x) + cLX~o(p, x) + E[Xi(E, x, t) -Xio(E, x)1 

with p = E. Bearing this in mind, we will put X1,,(~, x) 3 0 below to simplify the formulations. 

Resonance 24 = pi In this case the normal form of the linear system has the form 

5) =i~j(E)(rlle-“‘-ae~“)+... (i=l,...,m) 

‘I$ = h,?h +iEb(E)e2”1fq,+... 

-. 
VI = -&ii, - iEb(E)e*“l’q, +. . . 

where all ai equal zero when h,i is not an integer. 
Making the replacement 

ql = wl exp(l,t), iji = G, exp(-hrt) 

we obtain 

53 =bj(E)(Wl -iCl)+*.. (i=I,...,m) 

wj = iEb(E)i&+ . . . . El = -iEb(E)W,+... 

and the characteristic exponents have non-zero real parts K,,, = *EWE). 

Theorem 2. Parametric resonance 2h, = pi, p E 2 almost always (b # 0) leads to instability, 
according to the first approximation. 
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Resonance 4 + 4 = pi. In the variables w, and w, we have 

w; =ie&ii$+..*, w; =&i&+... 11.3 

and the characteristic exponents of this system are K~,~ = K,,, = +e~(&). Hence the system is 
unstable according to the first approximation if 44 > 0. 

Suppose 44 < 0. Then all k are pure imaginary and the characteristic exponents of the 
original system are 

a; =a, +&j&g, -a;, a; =h2-E~, -a; 

In fact, if original system (1.3) has the solution w, = c, expfta) (c, = const) then 

w; = KC, CXpWt) = i&b1F2, w2 = c2 exp(-w) (c2 = const) 

The calculated values of h;* and iz show that resonance hy +5: = pi occurs in the non-linear 
system. 

Theorem 3. If 44 >O then the parametric resonance &+ h, =pi, p E Z, p f 0 leads to 
~stabi~ty according to the first approxi~tion. When b& CO the characteristic exponents 
+h;‘, &AZ are purely imaginary and the resonance J,T + h: = pi occurs in the non-linear system. 

The non-linear system. If there are no resonances 

system (1.2) is formally stable. This can be shown by adding the equation i=O to (1.2) and 
normalizing the reversible system obtained with m+l zero and n pairs of purely imaginary 
roots. As a result, we obtain the special case of [3]. Hence it follows that the other properties 
established in [3J for the non-resonance case are also true. 

Suppose the resonance (1.6) with p=O now occurs in the system. The resonance terms in 
normal form do not depend on time explicitly, and therefore the properties established for the 
autonomous system (with E = 0) in [l] remain valid for the quasi-autonomous system. 

In the case of resonance (1.6) with p f 0 the resonance coefficients in normal form depend 
on E, vanishing when E = 0. Hence we have the following [3]: third-order resonance, as a rule 
leads to instability, and stability in any finite order occurs in the case of fourth-order 
resonances. These ~nclu~o~ were previo~ly obtained for multi~~uen~ resonances in f5]. 

Theorem 2 solves the problem of the stability in the case of the single-frequency second- 
order resonance. In the degenerate case (b=O) the system is stable in any finite order as 
follows from [3] and from the above discussion. 

Resonance 4 + & = pi in a non-linear system. Let the condition 44 c 0 be satisfied in 
Theorem 3. The characte~stic exponents are then purely irna~a~ and the normal form of the 
system of the first non-linear approximation has the form 

where A*+, Bik, C, are certain constant coefficients and the complex-conjugate group of 
equations IS omitted. 
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Putting 

9, = 09~ e~P(~~f~, r\, = w2 exp(h>rj 

and changing to the variables 

p, = w,iq, p2 = w2q, y - w,w2 + iF,iilF32 

we obtain the model system of the first non-linear approx~a~o~ 

5 

2 ‘ = xAz, z=(P,,P,*Y)? x=f 7 4p,p2 -Y (1.7) 

A=Ilapll:, “II =E(R,~ -C~z,, a12 =EBIzI al3 =EC,I 

a21 =E&r +,2 = E(A2* - Cz, I, a23 = EC22 

a,, =- 4 -41 +~C22, ~32 z-42 -42 +&Cll, a33 =-E(C~I +C22) 

which was examined in 161. As was established in [6], the necessary and sufficient condition of 
stability (1.7) in the stru&krally stable case is the requirement that the equation 

G3k3 + Czk2 + G,k + Go = 0 

should not, have a positive solution k satisfying the condition 

lB,,k2+(C2, -A,,+&, -C,2)k-A211<2J7;1C22-kCd 

The c~fficients of Eq. (1.8) are calc~ated from the formulae 

K2G3 = C:, (EC,, -W+~,2(cL-42C22) 

E-~G~ =C:1@C21 -P)+~C,,C,,(~-.~~,)+EB~Z(C~,A~~ --3+n~@-642C22) 

K2Gi =2c,,C,,~-C~a-EC,,c~2 -EC121(J3-dft1e22)+~~(C~1Ail -Y) 

c-=GO = Cz2 f&C, -!3)+~2,W-C,,4,) 

“=A,,+429 P=Al,+&,, r=B,,-C,2-A22+C2, 

S=U4,, +C21Kkr v=(C,, +WC22, CI=(CI~+A&,~ 

~uation (1.8), apart from terms of order E, can therefore be written in the form 

(1.9) 

(ak+ @)(Cr,k-C22)2 =E(...) (1.10) 

Hence it fobw that, if c@ CO, Eq. (1.8) always has a positive root calculated 
formula 

k=+ia+&(...) 

from the 

When the additional condition C,,C, 3 0 is satisfied Eq. (1.10) can also have other positive 
roots which, as can be easily shown, do not satisfy condition (1.9). 

Thus, confining ourselves by the structurally stable situation, as in [6], we arrive at the 
following assertion. 

T~e~~~~ 4. Let the bo~dary i’JK of the cone 

K = {p,, ~2~1~: 4p1p2 3 y2, PI 3 0. P2 3 0) 

have no degenerate invariant rays. The model system is then stable if and only if at least one of 
the inequalities 
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(1.11) 

is not true. 
When condition (1.11) is satisfied the original system (1.2) is unstable. 

2. THE CONDITIONALLY PERIODIC SYSTEM 

Now let the vector-function X1(&, x, t) in (1.1) be conditionally periodic in t with the basis of 
the frequencies 82 = (o,, . . . , 0,) while the vectors A and fi satisfy the condition of reduci- 
bility of the system [2, p. 921 to normal form. In this case the resonance terms are found from 
the equation 

(41 - lj)hl + . . . + (& - r,,)h, + i ( P, A ) = 0 

(P,A)=p*ti*+...+p,c0, 
(2.1) 

and the dependence on time is given by an integer vector P in the form of the factor i(P, Cn)t 
instead of exp(ipt) in the periodic case. Therefore, if 

h,*Arj+i( P,fi)#O (2.2) 

system (1.3) reduces to the same normal form as in the periodic case and Theorem 1 remains 
valid. 

When the resonance cases (Theorems 2-4) were considered we substituted the roots h, for 
the quantity ip. In the case of the conditionally periodic system this substitution also occurs but 
it is necessary to use i(P, a> instead of ip. All the remaining discussions are as before, and, 
Theorems 2-4 therefore remain valid if to substitute i(P, a) for the quantity is, in their 
formulations. 

3. SYSTEMS CLOSE TO RESONANCE 

Let us consider a reversible system (autonomous, periodic, and conditionally periodic) 
whose right-hand sides depend on a certain parameter E. Let the system of the linear 
approximation be stable and reducible to an autonomous one with m zero and n pairs of pure 
imaginary roots &h,(e) (s = 1, . . . , n) and, when E = 0, let resonance occur in the system. We 
then have the non-resonance case when E #O, and the system is formally stable (for a 
conditionally periodic system this is true under the additional conditions of reducibility to 
normal form [Z]). It is of interest to clarify, when E z 0, what happens with the solutions which 
showed instability in the presence of a resonance, i.e. when e=O. We shall consider this 
problem using the example of two characteristic cases of third-order and fourth-order 
resonances. 

As above, we regard E as the local variable and normalize the resonance system obtained 
with E # 0. The model system is actually written out in [l] and up to O(&*) and fourth-order 
infinitesimal terms in the phase variables it has the form 

r; = 2B, sinefi rip1’2 (a = l,....lt) 
j=l (3.1) 

8.=aE+fi Airi+ i p.B.fi t-k 
j=l ' 'k=l 

Pkt2-$k cos 0 

j=l 
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p,h,(o)+...+p,h,(Oj=O, p=,g, Pj =3 of 4 

where pi are the natural numbers, u, Aj, and B, are certain constants, but all Aj =0 when 
there is third-order resonance. For simplicity, we assume that there are no zero roots and all 
the frequencies are resonance frequencies. 

In the non-degenerate cases, when there are no zeros among B,, the growing solutions in 
the form of the rays r, = k,r (k, = const, a = 1, . . . , n), which exist for all B, of the same sign 
[l], indicate the instability of system (3.1). Suppose all B, >O. Then one can take k, = B, and 
the equations for r and 6 have the form 

r’ =213[si*fJrP’*, n = fi BPj” 
j=1 ’ 

8‘ =ae+2br+pflcos0rPJ2-‘, b= ‘i, AiBj 
‘= 

(3.2) 

The system obtained is canonical with ~a~lton function 

H = a&r + (b + 2IIcos O)fln 

and is completely analysed in the phase plane. 
The phase portrait of system (3.2) with p = 3 (third-order resonance) is given in Fig. l(a) for 

the case QE > 0. Thus, bifurcation of equilibrium occurs when E = 0 and, apart from the zero 
position of equilibrium, a saddle-point with coordinates 8. =n, r. =(~E/~II)’ appears, The 
bifurcation diagram is shown in Fig. l(b) where centres are marked by light dots and saddles 
are marked by crosses. The equation of the separatrices has the form 

(a&+ 2~~~o~~)r = -(ac.P f (311j2 

In the case close to fourth-order resonance, the phase portrait has a different form depend- 
ing on whether system (3.2) is stable when E = 0. If I b I> 2II (the system is stable) then, when 
aeb > 0, all the trajectories are closed and surround zero. When ueb < 0 the phase portrait is 
given in Fig. 2(a). Two new steady saddle-points with coordinates O.rr, r, = -ael(2b-4Il); 
9. = 0, r. = -ael(2b+ 4lI) appear. In this case the equations of the separatrices have the form 

[a& + (b + 2lIcos 0>r]r = (aE)*/(2b f 4311) 

The bifurcation diagram is shown in Fig. 2(b). 
When I b 1~ 2ll (system (3.2) is unstable if E = 0) the phase portrait has the same form as in 

Fig. l(a). When I b I= 2lI with a&> 0 we have periodic motions. When a&b <O the phase 
portrait is the same as in Fig. l(a), the saddle then appears in the right-hand half-plane (when 
ae > 0). 

4. PARAMETRIC INSTABILITY IN THE PROBLEM OF THE ROLLING OF 
CHAPLYGIN’S SPHERE ALONG AN ABSOLUTELY ROUGH PLANE 

Let us consider the motion of a heavy rigid body of spherical shape along a stationary rough 
horizontal plane. Let the body be Chaplygin’s sphere [7], and suppose its geometrical centre 
coincides with the centre of gravity. Note this problem has been solved by ~haplygin in 
quadratures [S]. The stability of the rolling of the sphere along a straight line is investigated 
below. 



V. N. Tkhai 

Fig. 1. 

Fig. 2. 

[B + mR2(y; + y;)]o; - mR2y2y,o; - mR2y2y,w; = (C - A)w,w, 
(4.1) 

[C+ mR2(yf + y;)lwj - mR2y3y,w; - mR2y2y3w; = (A - B)w,w, 

Y;+Y3W2-Y2W3309 Y;+Y~W~-Y~W~=OS Y;+Y2W1-Ylw2=o 

0 = (o,, 02, w3K Y = cYl* Y2r Y31T 

where o is the angular velocity of rotation of the body, and y is the unit vector at the point of 
contact of the sphere with the plane vertically upwards. 

System (4.1) is reversible and is not changed when the signs of t and the variables in one Of 
the pairs (wj, hi) or in the vector (II change, i.e. the system has the four linear automorphisms. 

Equations (4.1) have the partial solution 

Let the sphere of radius R have mass m and let A, B and C be the moments of inertia relative 
to the moving system of coordinates specified by the principle central axes of inertia. We 
obtain the equations of motion of the sphere as a special case of the equations given in [9] 

[A + d&y; + y;)]o; - mR2y,y20; - mR2y,y,~; = (B- C)w203 

01 =w2 = 0, y3 = 0, w3 = w.(const), y1 = cosw,t, y2 = sinw,t (4.2) 

which describes the rolling of the sphere with constant angular velocity w* along a Certain 
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straight line. We set up a system of equations in variations in the neighbourhood of motion 
(4.2). This system is decomposed into two groups of equations, one of which gives 

CD3 = W(const), yl = cos 9, “12 = sin Q (Q = at> 

r; = - W&II Q + 02COS Q 

In the second group of equations 

(A + d?2sit12Q)Oi 1 - mR2sin cp cos Cpo; = (B - C)Wwz 
(B + &Pcos%p)o; - mR2sin cp cos cpo; = (C - A)=Q 

we change to the new variables 

p=~~~osQ+~sinQ, q=~*s~Q-~~sQ 

and the time Q and solve the equations obtained for the derivatives. As a result, we obtain the 
reversible system 

dp/dq = -q + [a,sidQp + (b, + a,cos2~)ql/(2A) 

(4.3) 
qq/dQ = p - [(c, +e$OSftQ)p + e,sin2~1/(2A) 

a,=(C-A)(A+mR2)-(C-B)(B+mR2), b,=(C-A)(d+mR2)+ 

+(GB)(B+mR2), 

c,=A(C-A)+B(C-B), e,=A(C-A)-&C-B) 

A = _IAB + ~2(Acos~ + Bsin%@] 

When A = B system (4.3) becomes autonomous and in this case the square of the frequency 
of the small oscillations equals 

C C+mR2 
a:,=, A+mR2 

which is identical with the result in [lOI for the case of Chaplygin’s sphere. 
Consider the case when A is close to B : B = A(1 + 2e)). We then have 

tz, = 2A@A - C + mR2 + RAE), b, = 2(C - A)(A + mR2) - a, 

e,=?A@A-C-RAE), c,=2A(C-A)-e, 

A = -[A(A e mR2) + 2A&(A + mR%in%p] 

and system (4.3) takes the form (the periodic terms are written up to terms of order E) 

dpldQ = -K1Q-aESin2Qp+P&COS2Q~+ . . . 

dqldQ=$pca&cos2Qp+yEsin2Qq + . . . 

1 
lcl =l+- 

2&f 
I(~=~+~(c.+~) 

* 

a=2A-C+mR2 A(2A - C) + CmR2 2A-C 

A+mR2 
, p= 

A(A+mR’) ’ ‘= A+mR’ 

(4.4) 

f =ds, p,=mR2c/A,, A,=A+mR2+2AE+mR2E 

Let us average this system over Q in the period 27~. It then follows from Theorem 1 that the 
linear system is stable provided that 
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c c+mRz 12 
fi*=K,K~=x A+mRZ(l-%)+...#q, k z (4.5) 

(a is the oscillation frequency of the averaged system), while its characteristic exponents, to 
terms of order E, equal kin. Otherwise the second-order resonance 2a = 2 occurs in the 
system. This resonance, as follows from the form of the right-hand sides of (4.4), can cause 
instability when I = 2. If the quantities A and C differ by terms of order E and Chaplygin’s 
sphere is nearly uniform. 

Let the parameters be such that il = 1. We change to complex-conjugate variables in (4.4) 

and normalize the system obtained. As a result, we have a system of the form (4.4) in which 

4h = Ct(K2 + fi)/K, + (K43 + f&)/Q 

Now, taking into account that when R= 1, up to terms of order E 

a = 1 + . . . . p = 1 +..., y=A/(A + mR*), K2 = 1 +... 

we calculate 

4b=3+ A/(A+mR2)+...#0 

By Theorem 2, the rolling of the sphere is unstable in this case. 

Theorem 5. Let Chaplygin’s sphere of radius R have mass m, and let A, B = A(1 + 2~) and C 
be the principal central moments of inertia. The rolling of the sphere along a straight line is 
formally stable when E is sufficiently small and condition (4.5) is satisfied. When Q= 1 
parametric resonance occurs and the rolling is unstable according to the first approximation. 
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